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The standing vortex behind a disk normal to 
uniform flow at small Reynolds number 
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Viscous incompressible flow around a circular disk set normal to undisturbed flow 
is theoretically studied a t  small values of the Reynolds number. The critical Reynolds 
number at which a standing vortex first appears behind the disk is zero, and the flow 
separates from the edge of the disk. Several other features of the flow are obtained 
from the present analysis. 

1. Introduction 
The critical Reynolds number a t  which a standing vortex first appears behind a 

body may be one of the interesting parameters in the dynamics of laminar viscous 
flow. In  the present paper, we concern ourselves with the critical Reynolds number 
for a circular disk placed perpendicular to uniform viscous incompressible fluid flow. 
In  order to attain this objective, we must have an exact expression for the Stokes 
stream function a t  small values of the Reynolds number R. Thus the present problem 
must include the use of the technique of so-called matched asymptotic expansions 
for this axisymmetric flow. Using this technique, Breach (1961) has given drag force 
experienced by all ellipsoids of revolution, both prolate and oblate, but i t  appears 
that there is no explicit expression for the stream function. On the other hand,'the 
similar problem for a flat plate has been discussed by Miyagi (1978), who reported 
that the critical Reynolds number is zero and the flow separates from the edge of the 
plate. In the two-dimensional flow, however, it may be supposed that the matching 
procedures are not necessarily complete. 

Here, we seek for an exact expression up to the second approximation in the 
expansions of the stream function $ = )cr, + R$l + . . . . By evaluating the stream 
function thus obtained and investigating the behaviour of the vorticity in the vicinity 
of the disk edge, it is revealed that the critical Reynolds number under discussion 
is zero and the separated streamline arises from the edge of the disk. Furthermore, 
the vorticity distribution on the disk, the separation angle of the flow a t  the edge 
of the disk and the size of the standing vortex are discussed, and an example of flow 
pattern near the disk is also drawn a t  the value of R = 0.3. 

2. Fundamental equations and boundary conditions 
We consider steady viscous incompressible fluid flow past a circular disk set normal 

to the uniform flow of speed U .  Since the flow field is axisymmetric, we take 
cylindrical coordinates (z, y) normalized by the radius a of the disk. The z-axis 
coincides with the symmetry axis, the y-axis is normal to it and the disk is placed 
on the y-axis between y = 0 and 1 (z = 0). 
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Introducing the Stokes stream function defined as 

q 5 = - - ,  1 all. q y = - - -  1 all. 
Y a Y  ax 

where ( Upz, Uq,) denote the (x, y)-components of the fluid velocity, the equation of 
continuity is identically satisfied, and the Navier-Stokes equations of motion become 

where 

R = Ua/v  is the Reynolds number and v the kinematic viscosity of the fluid. The 
vorticity w is also given by 

1 
w = A - Z = -  aq aq -E2+. (2.3) 

ax aY Y 
Then, for the sake of convenience in the treatment of the disk, we adopt oblate 

spheroidal coordinates ( A ,  5)  in place of (x, y) as 

h = 0 gives the surface of the disk, A+ co corresponds to infinity, and [ = 1 and 
5 = - 1 to the down- and upstream sides of the symmetric axis respectively. 
Furthermore, the differential operators are transformed into 

The boundary conditions are written in terms of ( A ,  5) as 

$ = O  on [=",I 

all. 
ah 

$ = O ,  - = 0  at A = O ,  

i,&+$(1-p)A2 as A - z c o .  J 

3. First approximations 

form 
I n  the present problem, i t  may be sufficient to  assume the inner solution 9 in the 

ll. = $~~+Rll .~+. . . ,  (3.1) 

under the condition R < 1 .  Hence we have the equation for the first approximation 
k0 in the inner region as 

E4(?r, = 0. (3.2) 
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The solution of (3.2) subject to (2.6) can be seen in some available textbooks (e.g. 
Happel & Brenner 1973), that is 

1 
$o = --(1-~)[(1+h2)tan-'h-h]. 

When h %- 1, 
(3.3) 

(3.4) 

On the other hand, we must consider the outer region as usual in the procedures 
of matched asymptotic expansions. We take there cylindrical coordinates (X, Y )  and 
the outer stream function Y defined as 

X =  Rx, Y = Ry, Y =  R2+, (3.5) 

in terms of which the governing equation ( 2 . 2 )  becomes 

where 

Again, Y may be assumed to be of the same type as $ in expansion as 

Y = YO+RYl+.... (3.7) 

Substituting (3.7) into (3.6), the differential equation for !Po is given by 

Within the present approximation, it can be easily proved that the usual spherical 
coordinates referred to the origin r = (x2  + y2)i ,p = cos 8 = x /r  have the relations r x A 
andp x 6. Putting p = Rr x Rh, (3.4) can be transformed in terms of outer quantities 
(p,  p) as follows : 

(3.9) Yo = R2$, - + (  l -p2)(p2---pR+ 4 ...). 

Hence we get 
Yo = +(1 -p2)p2. (3.10) 

Noting that E; Yo = aYo/aX = 0, it  is readily seen that (3.10) is the solution of (3.8) 
and constitutes the uniform flow at infinity. 

4. Second approximations 
By substitution of (3.10) into (3.2), the differential equation for Yl can be reduced 

to 
EE E2-- Y - 0  ( O l -  ' 

making use of aYo/a Y = p( 1 -pu2)1. In a similar manner to the case of a sphere treated 
by Proudman & Pearson (1957), the solution of (4.1) can be represented by the 
Oseenlet in the form: 

(4.2) Yl = - - ( I  +p)  [I  -e-ip(l--~)]. 
4 
7t 
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The numerical factor -4/n has been determined from the matching the second 
term of in (3.9) with the first term of the expansion of (4.2) for p G 1, that is 

2 
u / , - v - -  ( l - p 2 ) p [ l - + + + p +  ...I. x (4.31 

Next, we proceed to the inner solution $', whose governing equation can be 
transformed from (2.2) with (3.1) and (3.3) by some cumbersome but straightforward 
manipulations to 

-+-2~2{~-2(1 + ~ 2 )  tan-1~11. (4.4) 

The particular integral $p of the above can be obtained stepwise as follows: 

1 , (4.5) 
h 

and 
1 

$p = - 2~(1-~)[2h(l+h2)(tan-'h)2+5(1+h2) tan-'h+h] 

- 

It should be noted that the expression for $p for h $- 1 is 

1 Y( 1 - e) ($+A3 + + K h 2 )  - - @ 2 +  O ( h ) ,  (4.7) 
1 

$P -2 7t 

and the second term in the bracket of (4.7) is automatically matched with the third 
term in (4.3). 

Furthermore, in order to satisfy the boundary conditions (2.6), we must add some 
solutions $c of the homogeneous equation for (4.4) such that 

1 6 
(1 - 6)  [( 1 + A 2 )  tan+ h- A] + $c = <( 1 - 6) A( 1 + h2) 

7t 

1 + - - -Y(l-p) [h2+h( l  + A 2 )  tan-l A] + - < ( A 2 -  l ) ,  (4.8) 

where use was made of the fact that  if E2x(h,  5) = 0, E4[hC;x(h, Y)] = 0, and the 
numerical factor 1/n2 in the first term has been settled by matching the second term 
of (4.3) with the first term of the outer expression for this term. Moreover, the term 
O(h3) in (4.7) is cancelled with that arising from (4.8). 

I n  spite of the above considerations, however, our solutions $p + $c do not as yet 
satisfy the boundary conditions completely, and the remnants are written as 

(: 3: K 

(4.9) 
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5.  Additive solutions 
These boundary conditions left behind mainly originate from the terms in (4.6), 

which are not of the type of separation of variables. However, there seems to be no 
obvious way to find such solutions of the homogeneous equation in closed form. 
Therefore we seek for a solution $s represented by separation variables, which is 
assumed to satisfy the above conditions (4.9) in the following form: 

(5.1) $s = m, 5) + ACG(A7 0 
where E2F(A,5) = E2G(A, 5) = 0. It is clear from (4.9) that  $s should be an odd 
function in 5. Then, if E2x(h, 5) = 0 and x ( A ,  5) = A(A) Z ( c ) ,  we get two equations 
to determine A(A) and Z ( 5 )  as 

I ( l - ~ ) Z ” + C Z = O ,  

(l+A2)A”-CA = 0, 

where primes indicate differentiation with respect to the appropriate variable, and 
C is a separation constant. Putting C = n(n+ l ) ,  we can determine Z,(C) under the 
consideration of the boundary conditions for 6 in the following form : 

Z,(Y) = ( l -P)m3,  (5.3) 

where P,(5) is the Legendre polynomial of order n. Further, i t  can be easily proved 
that Z,(<)  has the following orthogonality property : 

I n  a similar way, A,(A) can be determined as 

= (1+h2)qk(4,  (5 .5)  

where q,(A) is the same function as that  studied by Lamb (1932) and comes from 
the Legendre function of second kind, so that A,(A) tends to zero for A $- 1. Thus we 
can write down the following recurrence relations for both Z,(c)  and &(A)  from those 
of the Legendre function as 

(5.6) 

1 
Z,(5) = z w n -  1)5Z,-,(6)-nz,-2(5)1~ 

[nA,-,(A)- (2n- l)AA,-l(A)]. A , @ )  = - 
1 

n-1 

For conciseness, we show here the explicit forms of only the first four terms of both 
functions : 

(5.7) 

zo=O, A o = - l ,  

2, = 1-5, A ,  = A-(l+A2)cot-~A, 

Z 2 =  35(1--P), A , =  3h(l+h2)~~t-1h-33h2-2, 

2, = if( 1 - 6) (55 - 1 ), A3 = +[ 1 5 A 3  + 1 3 A  - 3(5A2 + 1) (1 + A’) cot-’ A] .  



226 T. Miyagi and T. Kamei 

Since Z2n(c )  and 22n+1(c) are odd and even in crespectively, F(A, C) and G(A, 5) should 
have the following forms : 

(5.8) i 
m 

F(A, Y) = I: A z n A 2 n ( A ) z 2 n ( C ) ,  
n-1 

m 

G(A7 5) = I: &m+1 A2m+1(A) Z2m+l(C),  
m - o  

where A,, and B,,,, are constants to  be determined in the following. 
Combining (5.1) with (4.9) and (5.8), we have 

By multiplying both sides of the first equation in (5.9) by Z2n(c)/(l -c), and using 
the orthogonality (5.4), we obtain the equation for A,,  as 

4n+l  1 
(5.10) 

Applying the formulae for the Legendre function to  the above integral, we arrive at 

(2n) ! 
(5.11) [-'? sgn c,2n(l') dc  = ( -  l ) n + l  

4 
-1 1-F  (2n+2) (2n- 1) (2,n!), ' 

From the recurrence relation (5.6), we get 

(2,n!), 
(2n) ! 

A,,(O) = - -. 

Thus we can write A,, in the following explicit form: 

2 4n+ 1 
A = ( - 1 ) n -  2n x (2n+2) (2n+ 1) (2n) (2n- 1) 

(5.12) 

(5.13) 

I n  the same way as for Azn, we can obtain an expression for B,,,, as 

where 

Using the formula 

(5.15) 

(5.16) 

which can be transformed from the corresponding one for the Legendre function, we 
have 

x (2n) ! 
Aln(0) = - (2n) (2n+ 1)- 

2 (2nn!)2 ' 
(5.17) 
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so that (5.15) can be rewritten in the form 

(5.18) 

It should be remembered that the behaviour of the above coefficient for n $ 1 can 
be expressed by 

(5.19) 

taking into account Stirling's formula n!  - ( 2 ~ n ) ; n ~ e - ~ .  On the other hand, 
although the logarithmic term in the integral (5.14) can be estimated for various 
Z2m+l(lJ, i t  may be shown that the replacement 

(5.20) 

is satisfactory with respect to convergence of the series. Using the recurrence relation 
for the Legendre function, 

and (5.4), we can show that 
4 4 n + l  (2nn!)2 
n2 (2n+ 1),(2n), (2n)! ' 

c,, = ( -1)n-  

(5.21) 

(5.22) 

It is readily seen that the behaviour of C,, for n $ 1 coincides completely with (5.18) ; 
therefore the convergence of the term in the square bracket in (5.14) is greatly 
improved. Again, since the values of the term A2m+l(0) are estimated as 

7 l  (2m) ! 
2 (2,m!), ' 

A2m+1(0) = - -(2m+ 1)- 

from the recurrence relation, the last problem is the integration 

(5.23) 

(5.24) 

After some calculations, we can prove that 

(2m+ l)! (2nn!)2 
(2,m!), (2n)! 

(2m+ 1 < 2n), (5.25) 

(2m+1 > 2n). 

Hence we finally obtain the result for B,,,, as 

We show here numerical values of only the first three terms for A,, and B,,,,: 

(5.27) 
A, = -0.033157 ..., A, = 0.002238 ..., A, = -0.000481 ..., 

B, = -0.090446 ..., B3 = 0.002738 ..., B, = -0.000445 ... . 
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Gathering the results obtained above, we can write down the exact expression for 
the stream function O(R) in the form 

1 11 = - 2 [( 1 - e) [2h( 1 + h2) (tanp1 + 5( 1 + /I2) tan-lh + A] 

1 6 + (1 --e) [( 1 + h2) tan-' h -A]  + 7 [( 1 -6) 4 1  + A 2 )  x 

1 
[h2+h(l + A 2 )  tan-'h]+ -[(h2-1) x 

a3 W 

The vorticity w = wo+Rwl+ ... associated with the above stream function can be 
readily obtained from the definition (2.3) as 

(5.29) 

6. Various results 
In order to examine the behaviour of w near the edge, we take polar coordinates 

( r ,  0) with the origin at the edge of the disk and the axis 0 = 0 on 5 = 0 ( A  > 0) such 
that 

x = rsine = A[, y = i+rcose = (1+h2)+(1 -e$  (6.1) 

When r 4 1 we have h << 1, 6 4 1 and the following relations: 

A w (2r)i C O S ~ ,  [ = (2r)isinge. (6.2) 

Both A and 5 are O(r;). Hence order estimation of (5.29) yields the most-dominant 
terms O ( d )  in the form 

where 
A = - 2 (1 + f), x (6.3) I 
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FIQURE 1.  Vorticity distribution on the back face of the disk. 

On the surface of the disk (0 = TK), therefore, the second term of (6.3) is more 
dominant than the first, and this singular behaviour at the edge is entirely the same 
as in the case of a flat plate. Thus the vorticity near the edge w - w1 N T B/(2r)l on 
the front (0 = -K) and back (0 = K) faces of the disk respectively. 

On the other hand, we can easily evaluate the distribution of w on the back face 
of the disk from (5.29), as shown in figure 1 .  Hence we may conclude that the standing 
vortex appears at any small but finite value of the Reynolds number, the flow 
separates from the edge, and the reattachment onto the disk does not occur. Thus 
it is shown that the conjectured equivalence to the case of a flat plate is valid. 

In  the vicinity of the edge, we can also calculate the zero-vorticity line and obtain 
the angle 4, between this line and the back face of the disk as 

#u = R-0,  = @BR x 13.8OR. (6.4) 
Then, substituting (6.3) into (2.3), it is readily seen that the zero-streamline near 

the edge is governed by Poisson's equation, which can be easily integrated under the 
condition (2.6), giving 

(6.5) + z $A2((QAh- BCR). 

Thus the separation angle of the flow is 

It may be noted that the separation angle is just 3 times g5u. 
The size s of the standing vortex can be estimated from the fact that qz = 0 on 

the line of symmetry, as indicated in figure 2. It may be seen from this figure that 
s x 0.4R when R 4 1. 

In figure 3 an example of the flow pattern around the disk is shown a t  the value 
of R = 0.3. 

Finally, it is easily proved that the drag coeacient in the present approximation 
is given by CD = (16/R) (1 + R / K ) ,  remembering that the only even functions of C in 

~ are (3.3) and the third term in (5.28), and coincides with the result given by Breach 
(1961). 

$ = 71: - e = ~ Z B R  x 41  OR. (6.6) 



230 T. Miyagi and T. Kamei 

R 
FIGURE 2. Size of standing vortex versus Reynolds number. 

FIGURE 3. Flow pattern around the disk at R = 0.3. 
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